Working with the “ convex ” Karush - Kuhn - Tucker theorem ∗
نویسنده
چکیده
1 The " convex " KKT theorem: a recapitulation We recall the Karush-Kuhn-Tucker theorem for convex programming, as treated in the previous lecture (see Corollary 3.5 of [OSC]).
منابع مشابه
On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملDuality and the “ convex ” Karush - Kuhn - Tucker theorem ∗ Erik
Our approach to the Karush-Kuhn-Tucker theorem in [OSC] was entirely based on subdifferential calculus (essentially, it was an outgrowth of the two subdifferential calculus rules contained in the Fenchel-Moreau and Dubovitskii-Milyutin theorems, i.e., Theorems 2.9 and 2.17 of [OSC]). On the other hand, Proposition B.4(v) in [OSC] gives an intimate connection between the subdifferential of a fun...
متن کاملOn subdifferential calculus ∗
The main purpose of these lectures is to familiarize the student with the basic ingredients of convex analysis, especially its subdifferential calculus. This is done while moving to a clearly discernible end-goal, the Karush-Kuhn-Tucker theorem, which is one of the main results of nonlinear programming. Of course, in the present lectures we have to limit ourselves most of the time to the Karush...
متن کاملSequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملFinite Dimensional Optimization Part I: The KKT Theorem1
These notes characterize maxima and minima in terms of first derivatives. I focus primarily on maximization. The problem of minimizing a function f has the same solution (or solutions) as the problem of maximizing −f , so all of the results for maximization have easy corollaries for minimization. The main result of these notes is the Karush-Kuhn-Tucker (KKT) Theorem, recorded as Theorem 3 in Se...
متن کامل